

VIBRATION EIGEN FREQUENCY ANALYSIS OF A SINGLE-LINK FLEXIBLE MANIPULATOR

M. P. Coleman
Department of Mathematics and Computer Science, Fairfield University, Fairfield, CT 06430, U.S.A.

(Received 17 February 1997, and in final form 13 November 1997)

Abstract

We analyse the vibration eigenfrequencies of a flexible slewing beam with a payload attached at one end. A wave propagation method (WPM) is used. There are four types of waves which propagate along a beam-two dispersive waves travelling in opposite directions, and two evanescent waves near the endpoints. We add a fifth time-harmonic function corresponding to oscillation of the beam at the payload end. We show that the large frequencies are asymptotically identical to those for the clamped-free beam, independent of the payload. For small eigenfrequencies, we incorporate WPM with a perturbation iteration procedure, the results of which agree well with "exact" values which result from solving a transcendental equation cited elsewhere in the literature.

© 1998 Academic Press Limited

1. INTRODUCTION

Resonant eigenfrequency analysis is important in the design and control of vibrating structures. In this paper, a theoretical analysis is performed, as well as numerical computations, for a distributed parameter structure-a flexible robotic manipulator. In particular, the entire range (low, medium and high) of the vibration spectrum is calculated for this particular structure to a high degree of accuracy and with a minimal amount of numerical computation. The author believes that such a comprehensive combined study has not been done previously.
The simplest example of a flexible manipulator is the so-called flexible slewing beam, which consists of a single flexible beam with a link at one end, the hub. The slewing beam has applications in many fields, including areas such as robotics and aerodynamics and, especially recently, in the study of large, flexible space structures (such as the planned space station).
A rigorous model for the dynamics of a flexible slewing beam, with a rotor located at the hub and a payload at the free end, has been derived in both references [1] and [2], in both cases using a variational approach. These models are more complete than the classical Euler-Bernoulli model in that they allow for the effects of the payload, as well as those of the inertia of the beam and the hub, on the motion.
In the study of structural dynamics it is essential to be able to calculate the natural vibration frequencies of the structures under study. Even for the Euler-Bernoulli beam, such eigenfrequency analysis involves finding the zeros of quite complicated transcendental functions (see references [3, 4]). For the case of the flexible slewing beam, the model in references [1] and [2] leads to an even more complicated expression (reference [2], equation (48), p. 302). It is the author's understanding that an analysis of the eigenfrequencies has not been done.

The wave propagation method (WPM) is a physically intuitive asymptotic method for the estimation of the eigenfrequencies of certain physical systems which are modelled by PDEs. WPM initially was developed by Keller and Rubinow [5] for second-order systems and was later generalized by Chen and Zhou [6] and Chen et al. [7] to systems modelled by fourth-order equations, such as the Euler-Bernoulli beam and Kirchhoff thin plate. Finally, in reference [8], Chen and Coleman developed a formal perturbation approach for improving the accuracy of WPM for the lowest few eigenmodes in the case of the Euler-Bernoulli beam.

The purpose of this paper is two-fold. First, WPM is applied along with a perturbation procedure to the model of a flexible slewing beam derived in references [1] and [2]. The presence of the payload attached to the tip of the flexible robotics arm adds certain intricacies to the boundary conditions and the ensuing transcendental equations. The novelty here is that the payload effects can be handled by adding an extra time-oscillatory term (see w_{p} in equation (12)) to the usual four types of waves on a beam. It is also proven that the eigenfrequencies of the slewing beam are asymptotically equivalent to those of the classical clamped-free Euler-Bernoulli beam, independent of the payload.

Second, in the process of performing the above, it has been found that the results given in reference [2] do not seem to satisfy the characteristic equation given in references [1] and [2] (reference [2], equation (48)) - this seems only to be a matter of units, and possibly a misunderstanding by the author of the units used there, as their results are a constant multiple of the results given here (see Table 4). In order to be complete, solutions to that characteristic equation are provided, along with a comparison between these values and the WPM results, for a significant portion of the spectrum, thereby providing benchmarks which do not seem to appear elsewhere in the literature, to the best of the author's knowledge. The data given here also exhibit the asymptotic convergence of these values to those for the clamped-free Euler-Bernoulli beam, as mentioned above.

Figure 1. The flexible slewing beam. (Reprinted with permission from Morris and Taylor ([2], p. 295) Copyright 1996 by the Society for Industrial and Applied Mathematics. All rights reserved.)

2. THE PROBLEM

Following reference [2], the flexible slewing beam shown in Figure 1 is treated. A rotor is located at the hub of the beam (labelled J_{0} in the figure), while a payload is attached at the opposite, free end. The beam deflects transversally only, and its movement is restricted to the plane. Again, following reference [2], $\left(x_{0}, y_{0}\right)$ denotes co-ordinates in the inertial frame in which the beam rotates, while (x, y) represents the non-inertial frame in which the x-axis is tangent to the beam at its hub. The physical constants necessary for describing the system are E : Young's modulus; I : area moment of inertia; L : length of beam; ρ : linear mass density; J_{0} : inertia of rotor; J_{p} : inertia of payload; and M_{p} : mass of payload.
In reference [2], variational methods are used to derive the equations of motion and associated boundary conditions for the system. These are

PDEs:

$$
\begin{gather*}
E I w_{x x x x}+\rho\left(x \varphi_{t t}+w_{t t}\right)=0 \tag{1}\\
J \varphi_{t t}+u(t)-\tau(t)=0, \quad 0<x<L, t>0 \tag{2}
\end{gather*}
$$

BCs:

$$
\begin{gather*}
w(0, t)=0, \quad w_{x}(0, t)=0, \tag{3,4}\\
E I w_{x x}(L, t)=-J_{p}\left[\varphi_{t t}(t)+w_{x t t}(L, t)\right], \tag{5}\\
E I w_{x x x}(L, t)=M_{p}\left[L \varphi_{t t}(t)+w_{t t}(L, t)\right], \quad t>0, \tag{6}
\end{gather*}
$$

where $w=w\left(x^{\prime}, t\right)=$ displacement of point P with x-value $=x^{\prime}$ in the frame (x, y); $\varphi=\varphi(t)=$ angle between the frames (x, y) and $\left(x_{0}, y_{0}\right) ; \tau=\tau(t)=$ applied torque at hub; $u=u(t)=\int_{0}^{L} \rho x w_{t t}(x, t) \mathrm{d} x+M_{p} L w_{t t}(L, t)+J_{p} w_{x t t}(L, t) ; \quad J=$ total inertia $=J_{0}+J_{p}+$ $M_{p} L^{2}+\int_{0}^{L} \rho x^{2} \mathrm{~d} x$.

Eliminating φ from the system, and setting $\tau \equiv 0$ (as one is dealing with the natural frequencies of vibration), one arrives at

PDE:

$$
\begin{equation*}
E I w_{x x x x}+\rho w_{t t}-x \frac{\rho}{J} u=0, \quad 0<x<L, t>0 \tag{7}
\end{equation*}
$$

BCs:

$$
\begin{gather*}
w(0, t)=0, \quad w_{x}(0, t)=0, \tag{8,9}\\
E I w_{x x}(L, t)-\frac{J_{p}}{J} u(t)+J_{p} w_{x t t}(L, t)=0, \tag{10}\\
E I w_{x x x}(L, t)+\frac{M_{p} L}{J} u(t)-M_{p} w_{t t}(L, t)=0, \quad t>0 . \tag{11}
\end{gather*}
$$

3. APPLICATION OF WPM

It is easy to see that the PDE (7) has the so-called wave solution

$$
\begin{align*}
w(x, t) & \underbrace{A \mathrm{e}^{-i k(a x+k t)}}_{\text {wave I }}+\underbrace{B \mathrm{e}^{-i k(-a x+k t)}}_{\text {wave II }}+\underbrace{C \mathrm{e}^{-k(a x+i k t)}}_{\text {wave III }} \\
& +\underbrace{D \mathrm{e}^{-k[a(L-x)+i k t]}+}_{\text {wave IV }}+\underbrace{F \mathrm{e}^{-i k^{2} t} x,}_{w_{p}} \tag{12}
\end{align*}
$$

where $a^{4}=\rho / E I$, and where waves I and II are dispersive waves travelling to the left and right, respectively; waves III and IV are evanescent waves near the endpoints $x=0$ and $x=L$, respectively; and w_{p} is a particular solution of the non-homogeneous equation. (Physically, w_{p} corresponds to the payload attached at $x=L$). A calculation (similar to that in reference [2]) shows that F must satisfy

$$
\begin{align*}
J_{0} F= & {\left[\left(-\frac{\rho L}{i k a}+\frac{\rho}{k^{2} a^{2}}+M_{p} L-i k a J_{p}\right) \mathrm{e}^{-i k a L}-\frac{\rho}{k^{2} a^{2}}\right] A } \\
& +\left[\left(\frac{\rho L}{i k a}+\frac{\rho}{k^{2} a^{2}}+M_{p} L+i k a J_{p}\right) \mathrm{e}^{i k a L}-\frac{\rho}{k^{2} a^{2}}\right] B \\
& +\left[\left(-\frac{\rho L}{k a}-\frac{\rho}{k^{2} a^{2}}+M_{p} L-k a J_{p}\right) \mathrm{e}^{-k a L}+\frac{\rho}{k^{2} a^{2}}\right] C \\
& +\left[\frac{\rho L}{k a}-\frac{\rho}{k^{2} a^{2}}+M_{p} L+k a J_{p}+\frac{\rho}{k^{2} a^{2}} \mathrm{e}^{-k a L}\right] D . \tag{13}
\end{align*}
$$

Now, the WPM estimates entail applying the BCs (8)-(11) to the wave solution (12) and neglecting terms of exponentially small order. Thus, near the endpoint $x=0$, wave IV is neglected and BCs (8) and (9) are applied to

$$
A \mathrm{e}^{-i k(a x+k t)}+B \mathrm{e}^{-i k(-a x+k t)}+C \mathrm{e}^{-k(a x+i k t)}+F \mathrm{e}^{-i k^{2} t} x
$$

resulting in

$$
\begin{gather*}
A+B+C=0 \\
\left(u_{1}+v_{1} \mathrm{e}^{i k a L}\right) A+\left(u_{2}+v_{2} \mathrm{e}^{i k a L}\right) B+u_{3} C+v_{4} D=0 \tag{14}
\end{gather*}
$$

where, both presently and below, the notation used is

$$
\begin{array}{cc}
u_{1}=-i k a J_{0}-\frac{\rho}{k^{2} a^{2}}, & v_{1}=-\frac{\rho L}{i k a}+\frac{\rho}{k^{2} a^{2}}+M_{p} L-i k a J_{p}, \\
u_{2}=i k a J_{0}-\frac{\rho}{k^{2} a^{2}}, & v_{2}=\frac{\rho L}{i k a}+\frac{\rho}{k^{2} a^{2}}+M_{p} L+i k a J_{p}, \\
u_{3}=-k a J_{0}+\frac{\rho}{k^{2} a^{2}}, & v_{3}=-\frac{\rho L}{k a}-\frac{\rho}{k^{2} a^{2}}+M_{p} L-k a J_{p}, \\
u_{4}=k a J_{0}+\frac{\rho}{k^{2} a^{2}}, & v_{4}=\frac{\rho L}{k a}-\frac{\rho}{k^{2} a^{2}}+M_{p} L+k a J_{p} . \tag{15}
\end{array}
$$

One may rewrite equation (14) as the reflection relation

$$
\underbrace{\left[\begin{array}{cc}
1 & 0 \tag{16}\\
u_{3} & v_{4}
\end{array}\right]}_{R_{1}}\left[\begin{array}{l}
C \\
D
\end{array}\right]=-\underbrace{\left[\begin{array}{cc}
1 & 1 \\
u_{1}+v_{1} \mathrm{e}^{-i k a L} & u_{2}+v_{2} \mathrm{e}^{i k a L}
\end{array}\right]}_{R_{2}}\left[\begin{array}{l}
A \\
B
\end{array}\right] .
$$

Similarly, near the endpoint $x=L, \mathrm{BCs}$ (10) and (11) are applied to

$$
A \mathrm{e}^{-i k(a x+k t)}+B \mathrm{e}^{-i k(-a x+k t)}+D \mathrm{e}^{-k[a(L-x)+i k]}+F \mathrm{e}^{-i k^{2} t} x
$$

which leads to the reflection relation

Combining equations (16) and (17) one arrives at

$$
R\left[\begin{array}{l}
A \tag{18}\\
B
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

where

$$
R=R_{3} R_{1}^{-1} R_{2}+R_{4}\left[\begin{array}{cc}
\mathrm{e}^{-i k a L} & 0 \tag{19}\\
0 & \mathrm{e}^{i k a L}
\end{array}\right],
$$

and equation (18) will hold for non-trivial $\left[\begin{array}{l}A \\ B\end{array}\right]$ if and only if k is such that det $R=0$. After much simplification, one finds $\operatorname{det} R=0$ if and only if

$$
\begin{equation*}
z \mathrm{e}^{i k a L}-\bar{z} \mathrm{e}^{-i k a L}+i y=0 \tag{20}
\end{equation*}
$$

where the real quantity y and the complex quantity z are given by

$$
\begin{align*}
y= & y(k)=2 k^{3} a^{3} J_{p}\left[a^{4} E^{2} I^{2}+a E I M_{p} k\right]+2 k^{2} a^{2} M_{p} L\left[a^{4} E^{2} I^{2}-a^{3} E I J_{p} k^{3}\right] \\
& -2 \rho\left[a^{3} E I J_{p} k^{3}+J_{p} M_{p} k^{4}\right]+2 k a \rho L\left[-a E I M_{p} k+J_{p} M_{p} k^{4}\right], \tag{21}\\
z= & z(k)=k^{3} a^{3} J_{0}\left[i a^{4} E^{2} I^{2}-(1-i) a E I M_{p} k-(1+i) a^{3} E I J_{p} k^{3}-i J_{p} M_{p} k^{4}\right] \\
& +\rho\left[(1-i) a^{4} E^{2} I^{2}+2 a E I M_{p} k+2 i a^{3} E I J_{p} k^{3}-(1-i) J_{p} M_{p} k^{4}\right] . \tag{22}
\end{align*}
$$

In turn, equation (20) is equivalent to

$$
\begin{equation*}
(\operatorname{Re} z) \sin k a L+(\operatorname{Im} z) \cos k a L+y=0 \tag{23}
\end{equation*}
$$

At this point, the following can be seen:
Theorem 3.1. For large k, one has

$$
k a L \approx \frac{(2 n+1) \pi}{2}, \quad n=1,2, \ldots
$$

Therefore, k is asymptotically distributed the same as for the clamped-free Euler-Bernoulli beam

$$
\begin{aligned}
E I w_{x x x x}+\rho w_{t t}=0, \quad 0<x<L, t>0 ; \\
w(0, t)=w_{x}(0, t)=w_{x x}(L, t)=w_{x x x}(L, t)=0, \quad t>0 .
\end{aligned}
$$

Proof: Dividing equation (23) by k^{7} and neglecting terms of order $1 / k$ or smaller, one gets

$$
\cos k a L=0
$$

which implies that $k a L=(2 n+1) \pi / 2$. (Note that the above still holds when there is no payload, i.e., when $J_{p}=M_{p}=0$.) Therefore, for large k, the dominant term in the asymptotic expansion for k is the same as that for the clamped-free beam (see reference [8], for example).

4. A PERTURBATION PROCEDURE FOR IMPROVING THE ACCURACY OF WPM

A perturbation method is now developed formally, as in reference [8], in order to improve the accuracy of the WPM calculations. First note that, if the BCs (8)-(11) are applied to the wave solution (12) without neglecting terms of exponentially small order, the result can be written in matrix form as

$$
\begin{align*}
& \underbrace{\left[\begin{array}{cccc}
1 & 1 & 1 & \mathrm{e}^{-k a L} \\
u_{1}+v_{1} \mathrm{e}^{-i k a L} & u_{2}+v_{2} \mathrm{e}^{i k a L} & u_{3}+v_{3} \mathrm{e}^{-k a L} & u_{4} \mathrm{e}^{-k a L}+v_{4} \\
\left(-a E I+i k^{3} J_{p}\right) \mathrm{e}^{-i k a L} & -\left(a E I+i k^{3} J_{p}\right) \mathrm{e}^{i k a L} & \left(a E I+k^{3} J_{p}\right) \mathrm{e}^{-k a L} & a E I-k^{3} J_{p} \\
\left(i a^{3} E I+k M_{p}\right) \mathrm{e}^{-i k a L} & \left(-i a^{3} E I+k M_{p}\right) \mathrm{e}^{i k a L} & \left(-a^{3} E I+k M_{p}\right) \mathrm{e}^{-k a L} & a^{3} E I+k M_{p}
\end{array}\right]}_{M} \\
& {\left[\begin{array}{l}
A \\
B \\
C \\
D
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right],} \tag{24}
\end{align*}
$$

where $u_{i}, v_{i}, i=1,2,3,4$, are given by equations (15). Now, the exact natural frequencies are those k for which $\operatorname{det} M=0$, and this equation is equivalent to equation (48) in reference [2]. However, rather than solving $\operatorname{det} M=0$, one defines the matrix

$$
M_{\varepsilon}=\left[\begin{array}{cccc}
1 & 1 & 1 & \varepsilon \tag{25}\\
u_{1}+v_{1} \mathrm{e}^{-i k a L} & u_{2}+v_{1} \mathrm{e}^{i k a L} & u_{3}+v_{3} \varepsilon & u_{4} \varepsilon+v_{4} \\
\left(-a E I+i k^{3} J_{p}\right) \mathrm{e}^{-i k a L} & -\left(a E I+i k^{3} J_{p}\right) \mathrm{e}^{i k a L} & \left(a E I+k^{3} J_{p}\right) \varepsilon & a E I-k^{3} J_{p} \\
\left(i a^{3} E I+k M_{p}\right) \mathrm{e}^{-i k a L} & \left(i a^{3} E I+k M_{p}\right) \mathrm{e}^{i k a L} & \left(-a^{3} E I+k M_{p}\right) \varepsilon & a^{3} E I+k M_{p}
\end{array}\right] .
$$

Note that when $\varepsilon=\mathrm{e}^{-k a L}, M_{\varepsilon}$ is the matrix M in equation (24); when $\varepsilon=0$, $\operatorname{det} M_{0}=0$ leads to the WPM approximation.

Now, the perturbation method proceeds as follows. Let

$$
\begin{equation*}
k=k_{0}+\varepsilon k_{1}+O\left(\varepsilon^{2}\right) \tag{26}
\end{equation*}
$$

in which case one also has

$$
\begin{gather*}
\mathrm{e}^{ \pm i k a L}=\mathrm{e}^{ \pm i k_{0} a L}\left(1 \pm i k_{1} a L \varepsilon\right)+O\left(\varepsilon^{2}\right), \tag{27}\\
k^{n}=k_{0}^{n}+n k_{0}^{n-1} k_{1} \varepsilon+O\left(\varepsilon^{2}\right), \quad n \in \mathbb{Z}^{+} . \tag{28}
\end{gather*}
$$

Then calculate $\operatorname{det} M_{\varepsilon}$:

$$
\begin{equation*}
\operatorname{det} M_{\varepsilon}=f_{1}\left(k_{0}\right)+\varepsilon\left[f_{2}\left(k_{0}\right)+k_{1} f_{3}\left(k_{0}\right)\right]+O\left(\varepsilon^{2}\right) \tag{29}
\end{equation*}
$$

where

$$
\begin{gather*}
f_{1}\left(k_{0}\right)=\operatorname{det} M_{0}\left(\text { so } \operatorname{det} M_{0}=0 \Rightarrow k_{0} \text { results from WPM }\right) \\
f_{2}\left(k_{0}\right)=8 i k_{0}^{3}\left(a^{5} J_{0} E^{2} I^{2}+k_{0}^{4} a J_{0} J_{p} M_{p}\right)+z_{1} \mathrm{e}^{i k_{0} a L}-\bar{z}_{1} \mathrm{e}^{-i k_{0} a L} \\
f_{3}\left(k_{0}\right)=4 i\left(5 k_{0}^{4} \frac{\rho L J_{p} M_{p}}{a}-3 k_{0}^{2} a \rho J_{p} E I-4 k_{0}^{3} \frac{\rho J_{p} M_{p}}{a^{2}}+2 k_{0} a^{4} M_{p} L E^{2} I^{2}-5 k_{0} a^{3} M_{p} L J_{p} E I\right. \\
\left.+3 k_{0}^{2} a^{5} J_{p} E^{2} I^{2}-4 i k_{0}^{3} a^{2} E I J_{p} M_{p}\right)+z_{2} \mathrm{e}^{i k_{0} a L}-\bar{z}_{2} \mathrm{e}^{-i k_{0} a L} \tag{30}
\end{gather*}
$$

where z_{1} and z_{2} are given by

$$
\begin{align*}
z_{1}= & 4 k_{0}^{2}\left(-\rho L E I M_{p}-i k_{0}^{3} \frac{\rho L J_{p} M_{p}}{a}-i k_{0} a \rho E I J_{p}+k_{0}^{2} \frac{\rho J_{p} M_{p}}{a^{2}}+a^{4} M_{p} L E^{2} I^{2}\right. \\
& \left.+i k_{0}^{3} a^{3} M_{p} L E I J_{p}+i k_{0} a^{5} J_{p} E^{2} I^{2}-k_{0}^{2} a^{2} J_{p} E I M_{p}\right), \\
z_{2}= & 2\left[3 i k_{0}^{2} a^{5} J_{0} E^{2} I^{2}-6(1+i) k_{0}^{5} a^{4} J_{0} J_{p} E I+4(-1+i) k_{0}^{3} a^{2} J_{0} E I M_{p}-7 i k_{0}^{6} a J_{0} J_{p} M_{p}\right. \\
+ & \left.6 i k_{0}^{2} a \rho J_{p} E I+2 \frac{\rho E I M_{p}}{a}+4(-1+i) k_{0}^{3} \frac{\rho J_{p} M_{p}}{a^{2}}\right]+2 i a L\left[i k_{0}^{3} a^{5} J_{0} E^{2} I^{2}\right. \\
- & (1+i) k_{0}^{6} a^{4} J_{0} J_{p} E I+(-1+i) k_{0}^{4} a^{2} J_{0} E I M_{p}-i k_{0}^{7} J_{0} J_{p} M_{p}+(1-i) a^{2} \rho E^{2} I^{2} \\
+ & \left.2 i k_{0}^{3} a \rho J_{p} E I+2 k_{0} \frac{\rho E I M_{p}}{a}+(-1+i) k_{0}^{4} \frac{\rho J_{p} M_{p}}{a^{2}}\right] . \tag{31}
\end{align*}
$$

Next, as noted above, $f_{1}\left(k_{0}\right)=0$ if and only if k_{0} results from the application of WPM. Then, the perturbation coefficient k_{1} is determined by requiring the coefficient of ε to vanish, i.e., one requires

$$
\begin{equation*}
k_{1}=-\frac{f_{2}\left(k_{0}\right)}{f_{3}\left(k_{0}\right)} \tag{32}
\end{equation*}
$$

Finally, an appropriate choice for ε is needed:

$$
\varepsilon=\varepsilon_{0}=\mathrm{e}^{-k_{0} a L}
$$

is chosen from which the first improvement of WPM is obtained:

$$
k_{01}=k_{0}+\varepsilon_{0} k_{1} .
$$

One may now update the improvement by letting

$$
\varepsilon=\varepsilon_{1}=\mathrm{e}^{-k_{01} a L}
$$

with the improved result

$$
k_{02}=k_{0}+\varepsilon_{1} k_{1} .
$$

Proceeding recursively, and letting $k_{00}=k_{0}$, one has

$$
k_{0, n+1}=k_{0}+\varepsilon_{n} k_{1}=k_{0}+k_{1} \exp \left(-k_{0 n} a L\right), \quad n=0,1,2, \ldots
$$

5. RESULTS AND COMPARISONS

The methods developed above are now applied to the two specific cases treated in reference [2] (which were chosen because they were used to come up with the experimental results in references [1] and [9]). First note that, in each of these cases, $J_{p}=M_{p}=0$; the WPM and perturbation calculations then become much simpler. WPM equation (20) becomes

$$
\begin{equation*}
\tan k_{0} a L=\frac{\rho-a^{3} J_{0} k_{0}^{3}}{\rho} \tag{33}
\end{equation*}
$$

or

$$
\begin{equation*}
k_{0} a L+n \pi+\tan ^{-1}\left(\frac{-\rho+a^{3} J_{0} k_{0}^{3}}{\rho}\right)=0, \quad n \in \mathbb{Z} \tag{34}
\end{equation*}
$$

As for equation (32), one obtains

$$
\begin{equation*}
k_{1}=-\frac{2 k_{0}^{3} a^{2} J_{0}}{\left(3 k_{0}^{2} a^{2} J_{0}+\rho L\right) \cos k_{0} a L+L\left(-k_{0}^{3} a^{3} J_{0}+\rho\right) \sin k_{0} a L} . \tag{35}
\end{equation*}
$$

Table 1 lists the values of the physical constants used for the calculations in reference [2] and also for the calculations given below.

Table 1
The values of the physical constants from reference [2] and used for the calculations in Tables 2 and 3

Constant	Value (Table 2)	Value $($ Table 3$)$
E	$2 \cdot 1 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$	$6.9 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$
I	$1.167 \times 10^{-11} \mathrm{~m}^{4}$	$8.31934 \times 10^{-11} \mathrm{~m}^{4}$
L	0.7 m	1.0 m
ρ	$2.646 \mathrm{~kg} / \mathrm{m}$	$0.233172 \mathrm{~kg} / \mathrm{m}$
J_{0}	$1.3 \times 10^{-3}(\mathrm{~kg}) \mathrm{m}^{2}$	$5.176 \times 10^{-3}(\mathrm{~kg}) \mathrm{m}^{2}$
J_{p}	$0(\mathrm{~kg}) \mathrm{m}^{2}$	$0(\mathrm{~kg}) \mathrm{m}^{2}$
M_{p}	0 kg	0 kg

Table 2
Comparison of the first 30 eigenfrequencies $\beta=\alpha k$ for the slewing beam with physical data given in column two of Table 1

"Exact" (β)	WPM				Classical clamped	Classical clamped
	(β_{0})	β_{01}	β_{02}	β_{03}		
$5 \cdot 5504$	$5 \cdot 5474$	$5 \cdot 5510$	5.5509	$5 \cdot 5509$	$2 \cdot 6789$	$5 \cdot 6094$
$9 \cdot 6955$	9.6966	$9 \cdot 6955$	9.6955		$6 \cdot 7059$	10.098
$13 \cdot 258$	13.258				$11 \cdot 221$	14.586
16.660	16.660				15.709	19.074
20.616	20.616				$20 \cdot 196$	23.561
24.899	24.899				24.684	28.050
$29 \cdot 297$	$29 \cdot 297$				$29 \cdot 172$	32.538
33.740	33.740				$33 \cdot 660$	37.026
38.202	38.202				$38 \cdot 148$	41.514
$42 \cdot 674$	$42 \cdot 674$				$42 \cdot 646$	46.002
$47 \cdot 152$	$47 \cdot 152$				$47 \cdot 124$	$50 \cdot 490$
51.633	51.633				51.612	54.978
$56 \cdot 117$	$56 \cdot 117$				$56 \cdot 100$	59.466
$60 \cdot 601$	$60 \cdot 601$				$60 \cdot 588$	63.954
$65 \cdot 086$	65.086				65.076	68.442
69.573	69.573				69.564	$72 \cdot 930$
$75 \cdot 059$	74.059				74.052	$77 \cdot 418$
78.546	$74 \cdot 546$				$78 \cdot 540$	$81 \cdot 906$
83.033	83.033				83.028	$86 \cdot 394$
87.520	87.520				87.516	$90 \cdot 882$
$92 \cdot 008$	$92 \cdot 008$				92.004	$95 \cdot 370$
96.495	96.495				96.492	99.858
$100 \cdot 98$	$100 \cdot 98$				$100 \cdot 98$	$104 \cdot 35$
$105 \cdot 47$	$105 \cdot 47$				$105 \cdot 47$	$108 \cdot 83$
109.96	109.96				109.96	113.32
114.45	114.45				114.44	$117 \cdot 81$
118.93	118.93				118.93	$122 \cdot 30$
123.42	123.43				123.42	126.79
127.91	127.91				127.91	131.27
132.40	132.40				$132 \cdot 40$	$135 \cdot 77$

In each of Tables 2 and 3, the first 30 eigenfrequencies, $\beta=\alpha k$, are listed for the slewing beam with data listed in Table 1 (note that the tables in reference [2] actually list the values for β^{2}). The first column contains the "exact" frequencies, i.e., those which result from solving the characteristic equation derived in references [1] and [2] (again, reference [2], equation (48)), namely

$$
\begin{gather*}
\rho^{3} \cos \beta L \sinh \beta L-\rho^{3} \sin \beta L \cosh \beta L-2 \rho^{2} M_{p} \beta \sin \beta L \sinh \beta L \\
-2 \rho^{2} J_{p} \beta^{3} \cos \beta L \cosh \beta L \\
-\rho^{2} J_{0} \beta^{3}(1+\cos \beta L \cosh \beta L) \\
\left.-\rho M_{p} \beta^{4}\left(J_{0}+J_{p}\right) \cos \beta L \sinh \beta L-\sin \beta L \cosh \beta L\right) \\
\quad+\rho J_{0} J_{p} \beta^{6}(\cos \beta L \sinh \beta L+\sin \beta L \cosh \beta L) \\
-J_{0} J_{p} M_{p} \beta^{7}(1-\cos \beta L \cosh \beta L)=0 \tag{36}
\end{gather*}
$$

Table 3
Comparison of the first 30 eigenfrequencies $\beta=\alpha k$ for the slewing beam with physical data given in column three of Table 1

"Exact" (β)	WPM				Classical clamped	Classical clamped
	(β_{0})	β_{01}	β_{02}	β_{03}		
$3 \cdot 3563$	$3 \cdot 3242$	$3 \cdot 3568$	$3 \cdot 3568$	$3 \cdot 3568$	$1 \cdot 8752$	3.9266
5.1531	$5 \cdot 1647$	$5 \cdot 1533$	5•1531	4.4941	4.6941	7.0686
$7 \cdot 9528$	$7 \cdot 9521$	7.9528	$7 \cdot 9528$		7.8548	$10 \cdot 210$
11.030	11.030				10.996	$13 \cdot 352$
$14 \cdot 153$	$14 \cdot 153$				$14 \cdot 137$	16.493
$17 \cdot 288$	$17 \cdot 288$				17.279	19.635
$20 \cdot 426$	$20 \cdot 426$				$20 \cdot 420$	22.777
23.565	23.565				23.562	25.918
$26 \cdot 706$	$26 \cdot 706$				26.704	$29 \cdot 060$
29.847	29.847				29.845	$32 \cdot 201$
32.988	32.988				$32 \cdot 987$	$35 \cdot 343$
$36 \cdot 129$	$36 \cdot 129$				$36 \cdot 128$	38.485
39.271	39.271				$39 \cdot 270$	$41 \cdot 626$
42.412	$42 \cdot 412$				$42 \cdot 412$	44.768
$45 \cdot 554$	$45 \cdot 554$				$45 \cdot 553$	47.909
48.695	48.695				48.695	$51 \cdot 051$
51.837	51.837				51.836	54.192
54.978	54.978				54.978	57.334
58.120	$58 \cdot 120$				$58 \cdot 119$	$60 \cdot 476$
61.261	$61 \cdot 261$				$61 \cdot 261$	63.617
64.403	64.403				$64 \cdot 403$	$66 \cdot 759$
67.544	67.544				67.544	69.900
70.686	$70 \cdot 686$				$70 \cdot 686$	$73 \cdot 042$
73.828	73.828				73.828	$76 \cdot 184$
76.969	$76 \cdot 969$				$76 \cdot 969$	79.325
$80 \cdot 111$	$80 \cdot 111$				$80 \cdot 111$	$82 \cdot 467$
83.252	$83 \cdot 252$				$83 \cdot 252$	$85 \cdot 608$
86.394	$86 \cdot 394$				86.394	88.750
89.535	89.535				89.535	91.892
92.677	$92 \cdot 677$				92.677	95.033

The equation was solved using the IMSL routine DNEQNF, and all results converge to at least eight digits. All computations were performed on the DEC Alpha 2100 at Fairfield University.

The second column of each table contains the WPM calculations $\beta_{0}=\alpha k_{0}$, and these are followed by the perturbation calculations $\beta_{01}=\alpha k_{01}, \beta_{02}=\alpha k_{02}$, etc. (until agreement or near-agreement is reached with the corresponding "exact" eigenfrequency in column one). Again, the WPM equation was solved using DNEQNF.

The final two columns contain, respectively, the corresponding frequencies for the classical Euler-Bernoulli clamped-free and simply-supported (pinned)-free beams. These frequencies were calculated by the author using the Legendre-tau spectral method, and they agree with the values given elsewhere in the literature (e.g., in reference [10]).
One sees that the exact and the WPM frequencies are in agreement except for the first few, for which the perturbation calculations give agreement or near-agreement. Also, in each table, the convergence of the exact frequencies to those of the clamped-free beam can be seen, as predicted by the theorem, above. Finally, the tables seem to suggest that one always has

$$
\begin{equation*}
\beta_{c} \leqslant \beta \leqslant \beta_{p} \tag{37}
\end{equation*}
$$

Table 4
Comparison of the squares $\left(\beta^{2}\right)$ of the first five "exact" eigenfrequencies from Table 2, and the first two from Table 3, with those (α) obtained in reference [2]

β	β^{2}	α	β^{2} / α
5.5504	30.807	4.719	6.528
9.6955	94.003	14.40	6.528
13.258	175.77	26.92	6.529
16.660	277.56	42.51	6.529
20.616	425.02	65.10	6.529
3.3563	11.265	8.896	1.266
5.1531	26.554	20.97	1.266

where β_{c} and β_{p} are the corresponding clamped-free and pinned-free frequencies, respectively. This result is also suggested by WPM, as follows. The WPM equation for β_{c} is

$$
\begin{equation*}
\cos \beta_{c} L=0 \Rightarrow \beta_{c} L=(2 n+1) \pi / 2, \quad n \in \mathbb{Z} \tag{38}
\end{equation*}
$$

while for β_{s} it is

$$
\begin{equation*}
\tan \beta_{s} L=1 \Rightarrow \beta_{s} L=(4 n+1) \pi / 4, \quad n \in \mathbb{Z} \tag{39}
\end{equation*}
$$

(see reference [8], for example). First, rewrite equation (33) as

$$
\begin{equation*}
\cos \beta_{0} L=\frac{\rho}{\rho-\beta_{0}^{3} J_{0}} \sin \beta_{0} L \tag{40}
\end{equation*}
$$

One sees that, if $\beta_{0} L \approx(2 n+1) \pi / 2$, then we must have $\beta_{0} L \geqslant(2 n+1) \pi / 2$ in order for the signs to "work out". Therefore, $\beta_{0} \geqslant \beta_{c}$.

Similarly, if one rewrites equation (33) as

$$
\begin{equation*}
\tan \beta_{0} L=1-\beta_{0}^{2} J_{0} / \rho, \tag{41}
\end{equation*}
$$

one sees that, if $\beta_{0} L \approx(4 n+1) \pi / 4$, then one must have $\beta_{0} L \leqslant(4 n+1) \pi / 4$, i.e., $\beta_{s} \geqslant \beta_{0}$.
In conclusion, it is seen that WPM allows for accurate computation of the vibration spectrum of the flexible slewing beam for all but the few lowest eigenfrequencies, for which it is found that WPM combined with the perturbation procedure gives accurate values. Therefore, it is possible to compute the entire spectrum to a high degree of accuracy, with a minimal amount of computation.

Finally, it should be mentioned here that Table 4 constitutes a justification of the author's earlier statement that the results obtained in reference [2] are a constant multiple of those presented here.

REFERENCES

1. F. Bellazza, L. Lanari and G. Ulivi 1990 IEEE Robotics and Automation Conference, Cincinnati, Ohio. Exact modelling of the flexible slewing link.
2. K. A. Morris and K. J. Taylor 1996 SIAM Review 38, 294-305. A variational approach to the modelling of flexible manipulators.
3. G. Chen, S. G. Krantz, D. W. Ma, C. E. Wayne and H. H. West 1987 Operator Methods for Optimal Control Problems, Lecture Notes in Pure and Applied Mathematics 108, 67-96. The Euler-Bernoulli beam equation with boundary energy dissipation.
4. R. Rideau 1985 Thése L'École Nationale Superiere des Mines de Paris, Sophia-Antipolis, France. Controle d'un assemblage de poutres flexibles par der capteurs-actionneurs porctuels: étude du spectre du système.
5. J. B. Keller and S. I. Rubinow 1960 Annals of Physics 9, 24-75. Asymptotic solution of eigenvalue problems.
6. G. Chen and J. Zhou 1990 SIAM Journal of Applied Mathematics 50, 1254-1283. The wave propagation method for the analysis of boundary stabilization in vibrating structures.
7. G. Chen, M. P. Coleman and J. Zhou 1991 SIAM Journal of Applied Mathematics 51, 967-983. Analysis of vibration eigenfrequencies of a thin plate by Keller-Rubinow's wave method (I): clamped boundary conditions with rectangular or circular geometry.
8. G. Chen and M. P. Coleman preprint. Improving low order eigenfrequency estimates derived from the wave propagation method for an Euler-Bernoulli beam.
9. H. Krishnan 1988 M.Sc. thesis, Department of Electrical Engineering, University of Waterloo, Ontario, Canada. Bounded-input discrete-times control of a single-link flexible beam.
10. K. F. Graf 1991 Wave Motion in Elastic Solids. New York: Dover Publications.
